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Temperature and Radiation 
Mike Luciuk 

The three main methods of heat transfer resulting in change of temperature are conduction, 

convection and radiation. In conduction, energy is transferred by physical contact, like when one 

burns a finger while touching a hot pot. In convection, energy transfer occurs by fluid motion like 

water boiling in a kettle. In radiation, energy is transferred by the absorption or emission of 

electromagnetic radiation like the warmth from the Sun. This paper will illustrate some examples 

of how radiation determines temperature of objects in space and on Earth. 

Electromagnetic Radiation 

All bodies with a temperature greater than absolute zero radiate energy. Absolute zero is the 

temperature at which there is no molecular or atomic random motion. It’s denoted by 0 Kelvin 

degrees, which is equivalent to -273.15° C or -459.67° F. Late in the nineteenth century, Stefan 

experimentally and Boltzmann theoretically developed a relationship between the temperature 

of a body and the amount of power it radiates.  

To determine outgoing radiation power, we utilize the Stefan-Boltzmann Law: 

                                    
4P A Tεσ=  (1)                               

Where            P (watts) is the radiated power from a body of area A (m
2
) at temperature T (K). 

ε is emissivity, a dimensionless number between 0 and 1 that determines the                  

efficiency of a body to radiate and absorb energy. A perfect radiator and absorber   

has an emissivity of 1. Soil, ice, rock, asphalt and human skin have emissivities 

slightly less than 1.  

σ is the Stefan-Boltzmann constant, 5.67x10-8 Wm-2T-4 

T is the body temperature in Kelvin. 

 

So if absolute temperature (in Kelvin degrees) doubles, radiated power increases by a 

factor of sixteen. Also, changes in temperature alter radiation peak wavelengths. Temperature 

increases move peak radiation to smaller wavelengths and vice-versa. 

 

Equilibrium and Solid Angles 
Assume we have several bodies of different temperatures and we want to determine 

temperature of a specific body from their radiation. At steady state or equilibrium, radiation 

received must equal radiation emitted. The amount of radiation received depends on the 

emitting body’s temperature, its size and its distance to the receiving body. Size and distance are 

quantified by calculating the solid angle. Solid angles are defined as the area of the emitting body 

divided by distance squared from the receiving body, with units called steradians: 

 Solid angle in steradians, 2

area

distance
Ω =  (2) 

For example, the solid angle of a body in space absorbing cosmic microwave background 

(CMB) radiation which comes from all directions is: (area of a sphere perceived from its 
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center)/(radius
2
) = 

2

2
4 4r

r
π π= steradians. The solid angle of a body receiving radiation from the 

Sun at 1 astronomical unit (AU) distance is: (solar disk area)/(distance
2
) or  

Ω = 
5 2

5
2 8 2

(7 10 )
6.84 10

(1.5 10 )
sun

sun

area x
x

distance x

π −= =  steradians, where the Sun’s radius is   ̴700,000 km and 

an astronomical unit is   ̴150 million kilometers. 

 

Let’s assume we have a body in space receiving radiation from other sources. It will in 

turn radiate power based on its temperature. At equilibrium, radiation absorbed will equal 

radiation emitted: 

 
4 4 4

body body cmb cmb sun sunT T T othersΩ = Ω + Ω +  (3) 

We can solve for bodyT by inserting the Ω  and T factors in the equation. For example, Tcmb =   ̴2.7 

K, Tsun =   ̴5800 K, Ω body = 4π  for effective temperature, Ω cmb= 4π , and Ω sun= 6.84x10
-5

 

steradians at one astronomical unit (AU). 

 

Temperatures Due to the Sun
 

In space, the major factor for temperatures of solar system planets and asteroids is the 

contribution from the Sun. However, other sources might include radiation from the cosmic 

microwave background, other nearby bodies, tidal effects, or internal sources of heat from 

elements with long term radioactivity. We’ll assume ideal conditions: emissivity = 1 for all bodies 

and no radiation attenuation through space. 

For example, assume a body orbits the Sun with a semi-major axis of 1 AU (150 million 

km). The Sun’s “surface” temperature is about 5800 K. We’ll assume the body’s albedo is zero 

and it has no greenhouse atmosphere. Recall that albedo is the fraction of radiation reflected 

back to space. CMB radiation will also be ignored. We can calculate the body’s effective 

temperature as follows: 

  
4 5 44 6.84 10 (5800)effT xπ −=  (4)   

  

1
5 4 4(6.84 10 )(5800)

280
4eff

x
T K

π

− 
= = 
 

 (5) 

 If the body has an albedo A, and has a greenhouse factor G, we can calculate its effective 

temperature as follows: 

  
4 5 44 (1 ) 6.84 10 (1 )(5800)avgG T x Aπ −− = −  (6) 

For example, Earth’s albedo, has a value of about 0.3 due to clouds. Its greenhouse factor, which 

reduces outgoing radiation is about 0.4, mainly due to water vapor in its atmosphere. Earth’s 

predicted average temperature is: 

 

11 1 15 4 44 4 41 (6.84 10 )(5800) 1 0.7
(280 ) 291

1 4 1 0.6avg eff

A x A
T T K K

G Gπ

− − −     = = = =      − −      
 (7) 
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Earth’s actual average temperature is 288 K. 

 

A simplified formula to determine the effective temperature of a body orbiting the Sun at 

a semi-major axis in AU of DAU is: 

 

1
41 280

1
AU

A K
T

G D

− =  − 
 (8) 

For example, the dwarf planet Eris has a semi-major axis of 68 AU. Assuming no albedo or 

greenhouse effects, its effective temperature would be 280 34 .
68

K K=  

 

There have been many exoplanets discovered in the past decade. Ignoring albedo and 

greenhouse effects, a formula for the effective temperature of an exoplanet is: 

 

1

2
star

exo star
star

diameter
T xT

distance
=

 (9) 

 

 Instead of effective temperatures, we might want to determine the maximum or sub-solar 

temperature of a body orbiting the Sun. In equilibrium temperature calculations, a body radiates 

in all directions, the area of a sphere. However, for maximum temperature calculations, radiation 

is only important facing the Sun, the area of a circle. This would require making the calculation by 

substituting an area solid angle ofπ  steradians for the spherical 4π  steradians solid angle used in 

equilibrium temperatures.  The maximum temperature on the Moon would be: 

 
4 5 4

max (6.84 10 )(5800)T xπ −=  (10) 

 

1
5 4 4 1

2
max

(6.84 10 )(5800)
2 1.41 280 396eff

x
T T x K K

π

− 
= = = = 
 

 (11) 

This is equivalent to 253° F. Sub-solar or maximum temperatures are   ̴41% greater than effective 

temperatures. 
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Temperature from Radiation on Earth 

In this section, we’ll explore maximum temperature changes when hot or cold objects are 

encountered when surrounded by ambient temperature conditions. Accuracy is compromised by 

ignoring radiation losses that could be caused by the atmosphere. 

 

Nuclear Fireball 

Assume an observer is 100 km from a nuclear explosion, a one megaton device whose fireball’s 

temperature is 10,000 K and diameter is one kilometer. Ambient temperature is 300 K (80° F). 

What is the temperature facing the device at the observer’s location? 

The solid angle from the observer’s perspective to the nuclear device is π  steradians, a 

situation analogous to subsolar temperature planetary calculations above. The device’s solid 

angle is 
2

5
2

(0.5) 7.85 10
100

xπ −=  steradians. The observer’s temperature is affected by ambient 

and device temperatures: 

 
4 4 5 4(300) (7.85 10 )(10000)observerT xπ π −= +

 
(12) 

This results in a temperature of 713 K, or 824°
 
F, a change of 413° C

 
or 744°

 
F, which would cause 

fires and severe burns for anyone facing the blast. However, anything in the shade of the nuclear 

device would only be exposed to the ambient 80° F temperature. 

 

Encountering an Iceberg 

A ship passes 0.5 km from a 1 km long, 100m high iceberg. The iceberg’s temperature is 273 K 

(32° F) and the ambient temperature is 300 K. What is the temperature drop on the ship’s side 

facing the iceberg as it passes by? 

The iceberg’s perceived solid angle is 2
(1 0.1) 0.4

0.5
x =  steradians. 

This is a significant percentage of the ambient π  solid angle. Therefore, a reduction of 0.4 

steradians will be required. 

 
4 4 4( 0.4)(300) 0.4(273)shipTπ π= − +  (13) 

As it moves by the iceberg, the ship’s temperature would gradually drop to 297 K (75° F). The 

drop of 5° F would likely be noticed by passengers on the ship’s side facing the iceberg. The other 

side of the ship would remain at 80° F. 
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See related tutorial on this website titled, “The Dewing or Frosting of Telescope Optics”. 


